close

 

Genetic Algorithms Note :

 

#0. Initialized

    To produce idividual ( chromosome ) into population pool.

#1. Crossover

    Coding and Decoding chromosome, eg. AABB & CCDD -> AADD & CCBB.

    To do a little change around the parents's chromosome, helpful to find optimal solution.

#2. Mutation ( Probability of mutation ~0.1% )

    To do a big change to jump out of local optimal solution.

#3. Sorting ( Competition, Selection )

    To find the best one in this iteration.  ( By compare Fitness Function )

 

  Loop #1

GA flowchart  

arrow
arrow
    文章標籤
    Genetic Algorithms
    全站熱搜
    創作者介紹
    創作者 Cuby 56 的頭像
    Cuby 56

    Cuby56

    Cuby 56 發表在 痞客邦 留言(0) 人氣()