close

 

Pattern Recognition Note :

 

#1. Supervised / Unsupervised 

 

  Supervised -> Classification ( Need to set LABEL )

  Unsupervised -> Clustering

 

class Face{
public:
	int label = 1;
};

class Non_Face{
public:
	int label = -1;
};

 

#2. Classifiers :

 

  1. ) Bayes : Probability and Statistics

  2. ) SVM ( Support Vector Machine )

       Optimization ( like Genetic Algorithms ), high performance, high complexity.

  3. ) NN ( Neural Network )

  4. ) Adaboost ( Adaptive Boosting )

       Supervised classifier, Fast ( performance ≒ SVM ), useful in real-time system.

       Assembling classifiers - Combine many low accuracy classifiers (weak learners)

                    to create a high-accurancy classifier ( strong learners )

  5. ) KNN ( k-Nearest Neighbor )

       Weak learners, Voting system, Simple, but low performance.

       Diffcault to implement, and easy to affected by noise.

 

#3. Procedure :

 

     Input     Training Process :  ( 1 ) Data collection

    ↓     /          ( 2 ) Feature extraction

  Classifiers              ( 3 ) Training classifier

    ↓     \

     Output     Test Process


#4. Feature Vector :

 

  1. ) Gray value ( useless )

  2. ) LBP ( Local Binary Pattern ) - Human Face

  3. ) SIFT ( Scale-Invariant Feature Transform ) - Object Recognition

     HOG ( Histograms of Orinted Gradients ) /

  4. ) Color ( HSI, YIQ, YCbCr ... etc. )

 

 

arrow
arrow
    創作者介紹
    創作者 Cuby 56 的頭像
    Cuby 56

    Cuby56

    Cuby 56 發表在 痞客邦 留言(0) 人氣()